3.7 \(\int \frac {\sin ^{-1}(a x)}{x^2} \, dx\)

Optimal. Leaf size=28 \[ -a \tanh ^{-1}\left (\sqrt {1-a^2 x^2}\right )-\frac {\sin ^{-1}(a x)}{x} \]

[Out]

-arcsin(a*x)/x-a*arctanh((-a^2*x^2+1)^(1/2))

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 28, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {4627, 266, 63, 208} \[ -a \tanh ^{-1}\left (\sqrt {1-a^2 x^2}\right )-\frac {\sin ^{-1}(a x)}{x} \]

Antiderivative was successfully verified.

[In]

Int[ArcSin[a*x]/x^2,x]

[Out]

-(ArcSin[a*x]/x) - a*ArcTanh[Sqrt[1 - a^2*x^2]]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 4627

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcSi
n[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1))/Sqrt[1
- c^2*x^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\sin ^{-1}(a x)}{x^2} \, dx &=-\frac {\sin ^{-1}(a x)}{x}+a \int \frac {1}{x \sqrt {1-a^2 x^2}} \, dx\\ &=-\frac {\sin ^{-1}(a x)}{x}+\frac {1}{2} a \operatorname {Subst}\left (\int \frac {1}{x \sqrt {1-a^2 x}} \, dx,x,x^2\right )\\ &=-\frac {\sin ^{-1}(a x)}{x}-\frac {\operatorname {Subst}\left (\int \frac {1}{\frac {1}{a^2}-\frac {x^2}{a^2}} \, dx,x,\sqrt {1-a^2 x^2}\right )}{a}\\ &=-\frac {\sin ^{-1}(a x)}{x}-a \tanh ^{-1}\left (\sqrt {1-a^2 x^2}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 28, normalized size = 1.00 \[ -a \tanh ^{-1}\left (\sqrt {1-a^2 x^2}\right )-\frac {\sin ^{-1}(a x)}{x} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcSin[a*x]/x^2,x]

[Out]

-(ArcSin[a*x]/x) - a*ArcTanh[Sqrt[1 - a^2*x^2]]

________________________________________________________________________________________

fricas [A]  time = 0.84, size = 49, normalized size = 1.75 \[ -\frac {a x \log \left (\sqrt {-a^{2} x^{2} + 1} + 1\right ) - a x \log \left (\sqrt {-a^{2} x^{2} + 1} - 1\right ) + 2 \, \arcsin \left (a x\right )}{2 \, x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsin(a*x)/x^2,x, algorithm="fricas")

[Out]

-1/2*(a*x*log(sqrt(-a^2*x^2 + 1) + 1) - a*x*log(sqrt(-a^2*x^2 + 1) - 1) + 2*arcsin(a*x))/x

________________________________________________________________________________________

giac [A]  time = 0.15, size = 48, normalized size = 1.71 \[ -\frac {1}{2} \, a {\left (\log \left (\sqrt {-a^{2} x^{2} + 1} + 1\right ) - \log \left (-\sqrt {-a^{2} x^{2} + 1} + 1\right )\right )} - \frac {\arcsin \left (a x\right )}{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsin(a*x)/x^2,x, algorithm="giac")

[Out]

-1/2*a*(log(sqrt(-a^2*x^2 + 1) + 1) - log(-sqrt(-a^2*x^2 + 1) + 1)) - arcsin(a*x)/x

________________________________________________________________________________________

maple [A]  time = 0.00, size = 31, normalized size = 1.11 \[ a \left (-\frac {\arcsin \left (a x \right )}{a x}-\arctanh \left (\frac {1}{\sqrt {-a^{2} x^{2}+1}}\right )\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arcsin(a*x)/x^2,x)

[Out]

a*(-arcsin(a*x)/a/x-arctanh(1/(-a^2*x^2+1)^(1/2)))

________________________________________________________________________________________

maxima [A]  time = 0.40, size = 39, normalized size = 1.39 \[ -a \log \left (\frac {2 \, \sqrt {-a^{2} x^{2} + 1}}{{\left | x \right |}} + \frac {2}{{\left | x \right |}}\right ) - \frac {\arcsin \left (a x\right )}{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsin(a*x)/x^2,x, algorithm="maxima")

[Out]

-a*log(2*sqrt(-a^2*x^2 + 1)/abs(x) + 2/abs(x)) - arcsin(a*x)/x

________________________________________________________________________________________

mupad [B]  time = 0.02, size = 26, normalized size = 0.93 \[ -\frac {\mathrm {asin}\left (a\,x\right )}{x}-a\,\mathrm {atanh}\left (\frac {1}{\sqrt {1-a^2\,x^2}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(asin(a*x)/x^2,x)

[Out]

- asin(a*x)/x - a*atanh(1/(1 - a^2*x^2)^(1/2))

________________________________________________________________________________________

sympy [C]  time = 1.44, size = 32, normalized size = 1.14 \[ a \left (\begin {cases} - \operatorname {acosh}{\left (\frac {1}{a x} \right )} & \text {for}\: \frac {1}{\left |{a^{2} x^{2}}\right |} > 1 \\i \operatorname {asin}{\left (\frac {1}{a x} \right )} & \text {otherwise} \end {cases}\right ) - \frac {\operatorname {asin}{\left (a x \right )}}{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(asin(a*x)/x**2,x)

[Out]

a*Piecewise((-acosh(1/(a*x)), 1/Abs(a**2*x**2) > 1), (I*asin(1/(a*x)), True)) - asin(a*x)/x

________________________________________________________________________________________